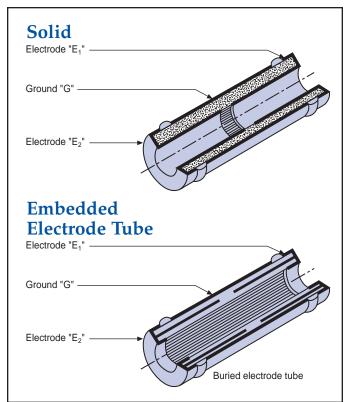


Tubular P_i Type Capacitors

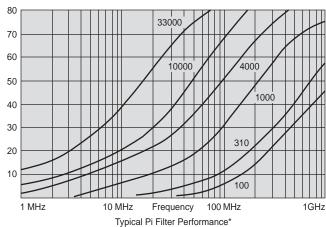
Spectrum Control Technology Inc. $P_i(\pi)$ type capacitors are ideally suited for connector and filter block applications requiring high capacitance values. Compared to feed-thru capacitors, the P_i capacitors have a much narrower transition band between the pass band and stop bands. P_i filters are effective in stopping high frequency interference without affecting necessary frequencies immediately below the stop band.


Our Pi capacitors consist of a unique tubular capacitor with an inner electrode imbedded within the ceramic material. This is in contrast to a solid tube capacitor whose inner electrode is on the inside diameter of the tube. Our embedded electrode Pi capacitor design offers several distinct advantages over other ceramic capacitors.

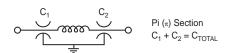
- Versatility in Capacitance Values and Voltage Ratings. The placement of the imbedded electrode can be chosen to optimize capacitor performance.
- Dimensional Constancy. The imbedded electrode makes it possible to change electrical performance without altering the inner or outer diameter of the ceramic tube for a given terminal size.
- High Mechanical Strength. In order to achieve increased capacitance in a plain tubular capacitor, manufacturers must utilize a thin wall tube. This decrease in wall thickness often leads to an increase in process problems. Spectrum's imbedded electrode permits the use of a thicker tubular wall, allowing for increased yields and minimal process problems in the assembly of connectors.

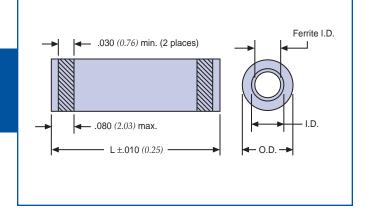
Features

- Effectively stops high frequency interference
- Miniature size high ratio of capacitance to volume
- Low inductance, non-polar
- Ideal for multi-pin connector applications
- Pi filter includes a ferrite inductor
- Impervious to moisture and contamination
- Excellent reliability
- -55°C to +125°C operation



Insertion Loss


Insertion Loss (db)



Specifications

50/100/200 VDCW + 125°C

			Dimensions							Minimum Insertion Loss (db)					
		0	Ferrite		Tube										300
Part Number	VDCW at 125°C	Cap. Value GMV (µF)	I.D.	Tol.	O.D.	Tol.	I.D.	Tol.	L	1 MHz	3 MHz	10 MHz	30 MHz	100 MHz	MHz to 10 GHz
51-109-008	200	10,000	.026	± .002	.082		.057	± .003	.425	_	11	20	48	65	70
51-109-009	100	12,000	(0.66)	(± .05)	(2.08)		(1.45)	(± .08)	(10.80)	5	13	23	50	65	70
51-109-010	50	15,000		(1.00)	(2.00)		(1.10)	(± .00)		7	14	28	55	70	70
51-134-001	200	12,000	.045	± .003	.098	± .003	.073	± .003		5	13	20	48	68	70
51-134-002	100	15,000	(1.14)	(± .003	(2.49)	(± .003	(1.85)	(± .003		7	14	25	52	70	70
51-134-003	50	22,000	(1.14)	(±.00)	(2.43)	(± .00)	(1.05)	(± .00)	.445	10	16	32	57	70	70
51-107-007	200	15,000	060	. 004	125	. 004	104	. 004	(11.30)	8	15	25	52	70	70
51-107-008	100	22,000	.068	± .004 (± .10)	.135	± .004 (± .10)	.104	± .004 (± .10)		10	16	32	57	70	70
51-107-009	50	30,000	(17.3)	(±.10)	(3.43)	(± .10)	(2.04)	(± .10)		12	18	35	60	70	70

Notes:

- 1. Dimensions are in inches, dimensions shown in () are in millimeters.
- 2. Capacitance value (C₁ plus C₂) is maximum available capacitance in GMV tolerance.
- 3. Other dimensional variations and capacitance values are available. Consult factory.